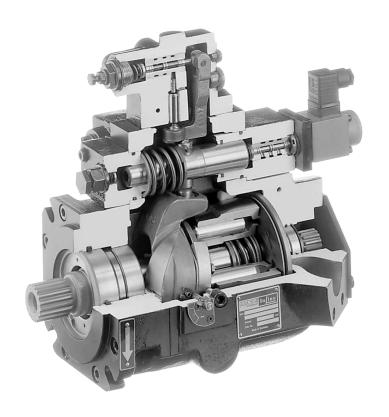
Регулируемый аксиально-поршневой насос тип V 30 D

Документация к изделию



Открытый контур

 Номинальное давление, рномин. макс.:
 350 bar

 Максимальное давление, рмакс.:
 420 bar

 Рабочий объем, Vмакс.:
 250 см³/об

© Информация от HAWE Hydraulik SE.

Передача, а также размножение данного документа, использование и передача его содержания запрещены, если четко не указано иное. Нарушения влекут за собой обязательство возмещения ущерба.

Все права, связанные с регистрацией патентов или промышленных образцов, сохраняются.

Наименования предприятий, марки изделий и товарные знаки не обозначаются особым образом. В особенности, если речь идет о зарегистрированном и запатентованном названии и товарном знаке, их использование регулируется законодательством. HAWE Hydraulik признает эти правовые положения в любом случае.

Дата печати / создания документа: 26.04.2019

Содержание

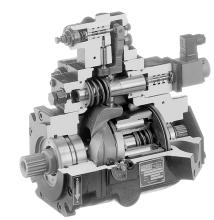
1	Обзор регулируемого аксиально-поршневого насоса, тип V3OD	4
2	Поставляемые варианты исполнения, основные данные	_
2.1	Основное исполнение	
2.2	Регулятор	
2.2.1	Perулятор LS, LSN, LSP, LSD.	
2.2.2	Регулятор Q, Qb.	
2.2.3	Регулятор V, VH	
2.2.4	Регулятор N, P, Pb и PD5	
2.2.5	Регулятор L, Lf и Lf1	
3	Характеристики	27
3.1	Общие данные	27
3.2	Характеристики	29
3.3	Электрические характеристики V30D	32
3.4	Датчик угла наклона	32
4	Размеры	33
4.1	Основной насос	33
4.1.1	Тип V30D-045	33
4.1.2	Тип V30D-075	36
4.1.3	Тип V30D-095/115	39
4.1.4	Тип V30D-140/160	42
4.1.5	Тип V30D-250	45
4.2	Индикатор угла наклона	48
4.3	Регулятор	49
5	Указания по монтажу, эксплуатации и техобслуживанию	52
5.1	Использование по назначению	52
5.2	Указания по монтажу	
5.2.1	Общие сведения	
5.2.2	Порты	
5.2.3	Монтажные положения	
5.2.4	Установка в бак	
5.3	Указания по эксплуатации	57
6	Прочая информация	59
6.1	Указания по проектированию	59

1

Обзор регулируемого аксиально-поршневого насоса, тип V30D

Регулируемые аксиально-поршневые насосы способны изменять геометрический рабочий объем от максимума до нуля, тем самым изменяя объемный расход потребителей.

Аксиально-поршневые насосы типов V30D, имеют конструкцию с наклонным блоком и предназначены для промышленной гидравлики с открытым контуром. Опционально они поставляются с проходным валом, чтобы дополнительные гидравлические насосы работали последовательно.


Данный насос прочной конструкции оптимально подходит для непрерывной работы в сложных условиях. Широкий выбор регуляторов насоса позволяет использовать аксиально-поршневой насос в различных областях применения.

Особенности и преимущества:

- Низкий уровень шума
- Длительный срок службы даже при эксплуатации в сложных условиях
- Широкий ассортимент регуляторов
- Полный крутящий момент на втором насосе в тандеме

Области применения:

- Гидравлические прессы
- Судовое оборудование
- Промышленное оборудование
- Производство агрегатов
- Горнодобывающая техника и тоннелепроходческие машины

Регулируемый аксиально-поршневой насос, тип V30D

2

Поставляемые варианты исполнения, основные данные

2.1 Основное исполнение

Условное обозначение:

Пример заказа:

Основной тип

Таблица 1 «Номинальный размер»

Обозначение	Рабочий объем (см³/об)	Номинальное давление р _{номин.} (бар)	Максимальное давление р _{макс.} (бар)
045	45	350	420
075	75	350	420
095	96	350	420
115	115	250 ¹	300 ¹
140	142	350	420
160	164	250 ¹	300 ¹
250	250	350	420

¹ При уменьшенном рабочем объеме существует возможность достигать более высоких значений давления.

Таблица 2 «Направления вращения»

Обозначение		Описание
	L	Против часовой стрелки
	R	По часовой стрелке
	В	Направление вращения в обе стороны (только для V30D-075, V30D-095, V30D-115, V30D-140, V30D-160, V30D-250)

По направлению взгляда на конец вала.

Таблица 3 «Исполнения вала»

Обозначение	Описание	Название/норма	Размер объекта	Макс. приводной крутящий момент (H·м)
D	Шлицевой вал	W35x2x16x9g DIN 5480	V30D-045	550
	(DIN 5480)	W(0,0,10,0, DTN 5/00	V30D-075	910
		W40x2x18x9g DIN 5480	V30D-095/115	1 200
		W50x2x24x9g DIN 5480	V30D-140/160	1 700
		W60x2x28x9g DIN 5480	V30D-250	3 100
K	Вал со шпонкой	Ø 35 - AS10x8x56 DIN 6885	V30D-045	280
	(DIN 6885)	Ø 40 - AS12x8x70 DIN 6885	V30D-075	460
		Ø 40 - AS12x8x80 DIN 6885	V30D-095/115	650
		Ø 50 - AS14x9x80 DIN 6885	V30D-140/160	850
		Ø 60 - AS18x11x100 DIN 6885	V30D-250	1 550
S	Шлицевой вал (SAE J744 или DIN ISO 3019-1)	SAE-C J744 14T 12/24 DP 32-4 DIN ISO 3019-1	V30D-045/075	500
		SAE-D J744 13T 8/16 DP 44-4 DIN ISO 3019-1	V30D-095/115/140/160/250	1 200

Таблица 4 «Типы исполнения фланца (со стороны привода)»

Обозначение	Описание	Обозначение	Размер объекта
G	Фланец	125 B4 HW DIN ISO 3019-2	V30D-045
	(DIN ISO 3019-2)	140 B4 HW DIN ISO 3019-2	V30D-075
		160 B4 HW DIN ISO 3019-2	V30D-095/115
		180 B4 HW DIN ISO 3019-2	V30D-140/160/250
F	Фланец (SAE J744 или DIN ISO 3019-1)	SAE-C J744, 4 otb. 127-4 DIN ISO 3019-1	V30D-045/075
		SAE-D J744, 4 OTB. 152-4 DIN ISO 3019-1	V30D-095/115/140/160/250

Таблица 5 «Уплотнения»

Обозначение	Описание
N	НБК
V	FKM
E	эпдм
С	НБК, подходит для ГФУ, ограничения см. в <u>"Указания по монтажу, эксплуатации и техобслуживанию"</u>

Таблица 6 «Типы исполнения корпуса»

Обозначение		Описание
1 Без проходного вала, порт всасывания 45°		
2 С проходным валом, порт всасывания 45°		
	3	Без проходного вала, порт всасывания 90° (только V30D-140, V30D-160)
	4	С проходным валом, порт всасывания 90° (только V30D-140, V30D-160)

Таблица 7 «Индикатор угла наклона»

Обозначение	Описание
0	Без индикатора
1	С индикатором
2	С датчиком угла наклона (датчик Холла)

Таблица 8 «Регулятор»

Обозначение	Описание				
Регулятор произво	егулятор производительности				
LS	Чувствительный к нагрузке регулятор				
LSN	Чувствительный к нагрузке регулятор со встроенным ограничителем давления				
LSP	Чувствительный к нагрузке регулятор с портом для удаленного управления для внешнего ограничителя давления				
LSD	Чувствительный к нагрузке регулятор без встроенного ограничителя давления для эксплуатации нескольких насосов в параллельном режиме				
Q	Регулятор производительности для настройки постоянного, не зависящего от частоты вращения объемного расхода				
Qb	Регулятор производительности для настройки постоянного, не зависящего от частоты вращения объемного расхода, для применений с высокими требованиями к точности				
V	Электро-пропорциональный регулятор производительности с возрастающей характеристикой				
VH	Гидравлический регулятор производительности с возрастающей характеристикой				
Регулятор давлени	я				
N	Регулятор давления				
P	Регулятор давления с портом для удаленного управления внешним пилотным клапаном				
Pb	Регулятор давления с портом для удаленного управления внешним пилотным клапаном. Специально для применений в условиях вибрации.				
PD5	Параллельный регулятор давления				
Регулятор мощнос	ти				
L	Регулятор мощности				
Lf	Гидравлический регулятор мощности с возрастающей характеристикой				
Lf1	Гидравлический регулятор мощности с падающей характеристикой				

Таблица 9 «Напряжение и исполнение катушки»

Обозначение	Подключение к электропитанию	Номинальное напряжение	Класс защиты (IEC 60529)
V/12	DIN EN 175 301-803 A	12 В пост. тока	IP 65
V/24	DIN EN 175 301-803 A	24 В пост. тока	IP 65

Таблица 10 «Ограничитель хода»

Обозначение	Описание
Без обозначения	Без ограничителя хода
1	Подготовлен для регулятора мощности
2	С регулируемым ограничителем хода (невозможно в комбинации с регулятором насоса типа V, VH)
2/	Ограничитель хода с фиксированной настройкой и указанием заданного рабочего объема $V_{\rm g}$ (см 3 /об)

Пример заказа

V30D-075 RDGN-2-0-02/LSN-350 - C 426

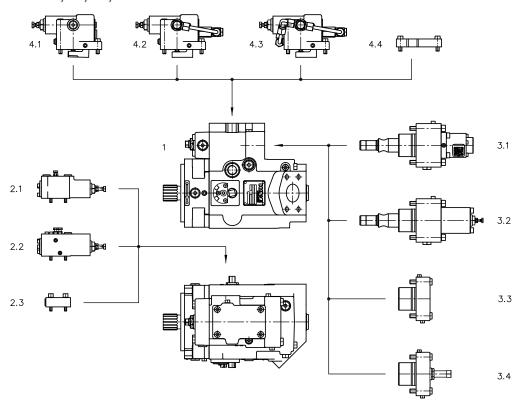
Таблица 11 «Исполнение фланца (с выходной стороны)»

Обозначение V30D						Фланец	Вал
045	075	095	115	140/160	250		
C 411	C 421	C 431	C 441	C 451/C 461	C 471	SAE-A J744, 2 отв. 82-2 DIN ISO 3019-1	SAE-A J744 (16-4 DIN ISO 3019-1) 9T 16/32 DP
C 412	C 422	C 432	C 442	C 452/C 462	C 472	SAE-A J744, 2 отв. 82-2 DIN ISO 3019-1	SAE-A J744 (16-4 DIN ISO 3019-1) ¹⁾ 9T 16/32 DP
C 413	C 423	C 433	C 443	C 453/C 463	C 473	SAE-A J744, 2 отв. 82-2 DIN ISO 3019-1	19-4 DIN ISO 3019-1 11T 16/32 DP
C 414	C 424	C 434	C 444	C 454/C 464	C474	SAE-B J744, 2 отв. 101-2 DIN ISO 3019-1	SAE-B J744 (22-4 DIN ISO 3019-1) 13T 16/32 DP
C 415	C 425	C 435	C 445	C 455/C 465	C 475	SAE-B J744, 4 отв. 101-4 DIN ISO 3019-1	SAE-B J744 (22-4 DIN ISO 3019-1) 13T 16/32 DP
C 416	C 426	C 436	C 446	C 456/C 466	C 476	SAE-B J744, 2 отв. 101-2 DIN ISO 3019-1	SAE-BB J744 (25-4 DIN ISO 3019-1) 15T 16/32 DP
C 417	C 427	C 437	C 447	C 457/C 467	C 477	SAE-C J744, 2 отв. 127-2 DIN ISO 3019-1	SAE-C J744 (32-4 DIN ISO 3019-1) 14T 12/24DP
C 418	C 428	C 438	C 448	C 458/C 468	C 478	SAE-C J744, 4 отв. 127-4 DIN ISO 3019-1	SAE-C J744 (32-4 DIN ISO 3019-1) 14T 12/24 DP
C 419	C 429	C 439	C 449	C 459/C 469	C 479	SAE-C J744, 2 OTB. 127-2 DIN ISO 3019-1	SAE-CC J744 (38-4 DIN ISO 3019-1) 17T 12/24 DP
		C 440	C 450	C 460/C 470	C 480	SAE-D J744, 4 отв. 152-4 DIN ISO 3019-1	SAE-D J744 (44-4 DIN ISO 3019-1) 13T 8/16 DP
C 500	C 501	C 503	C 506	C 510/C 515	C 521	125 B4 HW DIN ISO 3019-2	W35x2x16x9g (DIN 5480)
	C 502	C 504	C 507	C 511/C 516	C 522	140 B4 HW DIN ISO 3019-2	W40x2x18x9g (DIN 5480)
		C 505	C 509	C 512/C 517	C 523	160 B4 HW DIN ISO 3019-2	W40x2x18x9g (DIN 5480)
				C 514/C 520	C 525	180 B4 HW DIN ISO 3019-2	W50x2x24x9g (DIN 5480)
					C 527	180 B4 HW DIN ISO 3019-2	W60x2x28x9g (DIN 5480)

¹⁾ ANSI B 92.1, FLAT ROOT SIDE FIT отклоняющаяся от стандарта толщина зуба s = 2,357-0,03

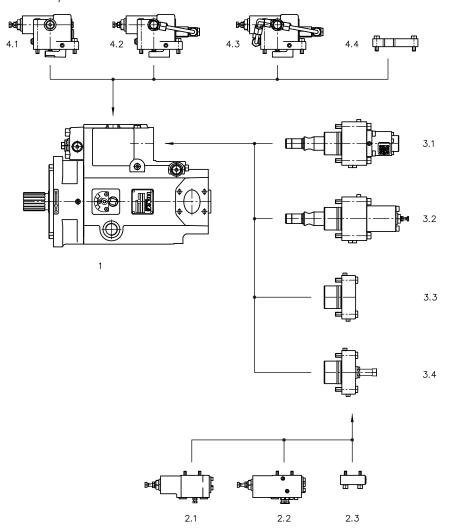
УКАЗАНИЕ

Соблюдайте максимально допустимый приводной момент, в противном случае возможно повреждение фланца или вала.

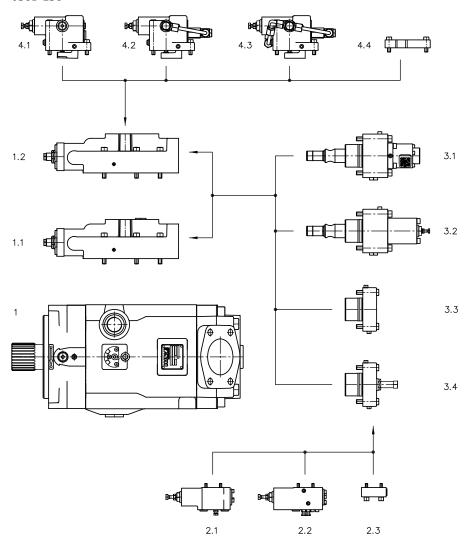

1 УКАЗАНИЕ

Для комбинаций насосов необходимо предусмотреть дополнительную опору.

2.2 Регулятор


V30D-045/075/140/160

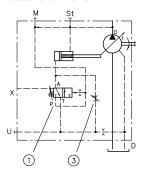
- 1 Основной насос
- 2.1 Регулятор типа N, P, Pb, LS, Q, Qb
- 2.2 Регулятор типа LSN, LSP
- 2.3 Крышка для исполнения без N, P, Pb, LS, LSN, LSP, Q, Qb
- 3.1 Регулятор типа V
- 3.2 Регулятор типа VH
- 3.3 Крышка для исполнения без V или VH, без ограничителя хода
- 3.4 Крышка для исполнения без V или VH, с ограничителем хода
- 4.1 Регулятор типа L, Lf1
- 4.2 Регулятор типа LSD
- 4.3 Регулятор типа PD5
- 4.4 Крышка для исполнения без L, Lf1, LSD, PD5


V30D-095/115

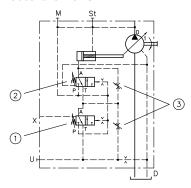
- 1 Основной насос
- 2.1 Регулятор типа N, P, Pb, LS, Q, Qb
- 2.2 Регулятор типа LSN, LSP
- 2.3 Крышка для исполнения без N, P, Pb, LS, LSN, LSP, Q, Qb
- 3.1 Регулятор типа V
- 3.2 Регулятор типа VH
- 3.3 Крышка для исполнения без V или VH, без ограничителя хода
- 3.4 Крышка для исполнения без V или VH, с ограничителем хода
- 4.1 Регулятор типа L, Lf1
- 4.2 Регулятор типа LSD
- 4.3 Регулятор типа PD5
- 4.4 Крышка для исполнения без L, Lf1, LSD, PD5

V30D-250

- 1 Основной насос
- 1.1 Регулирующая головка без L, Lf1, LSD, PD5 (серия)
- 1.2 Регулирующая головка для L, Lf1, LSD, PD5
- 2.1 Регулятор типа N, P, Pb, LS, Q, Qb
- 2.2 Регулятор типа LSN, LSP
- 2.3 Крышка для исполнения без N, P, Pb, LS, LSN, LSP, Q, Qb
- 3.1 Регулятор типа V
- 3.2 Регулятор типа VH
- 3.3 Крышка для исполнения без V или VH, без ограничителя хода
- 3.4 Крышка для исполнения без V или VH, с ограничителем хода
- 4.1 Регулятор типа L, Lf1
- 4.2 Регулятор типа LSD
- 4.3 Регулятор типа PD5
- 4.4 Крышка для исполнения без L, Lf1, LSD, PD5

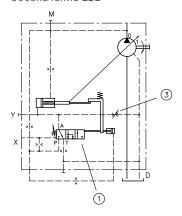

2.2.1 Регулятор LS, LSN, LSP, LSD

Регулятор LS(N,P,D) – это регулятор производительности, который генерирует переменный, не зависящий от частоты вращения объемный расход. Он корректирует рабочий объем насоса в соответствии с требуемым объемным расходом потребителей и регулирует постоянную разницу между давлением нагрузки и давлением насоса.

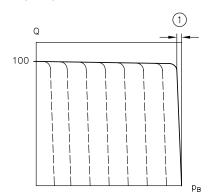

- LS: без ограничителя давления;
- LSN: со встроенным ограничителем давления;
- LSP: с портом для удаленного управления внешним ограничителем давления;
- LSD: без ограничителя давления для эксплуатации нескольких насосов в параллельном режиме.

Регулятор LSD используется, когда несколько насосов питают один потребитель. На всех насосах он регулирует одинаковый рабочий объем.

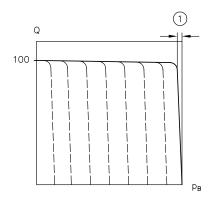
Обозначение **LS**


Обозначение LSN

Обозначение **LSP**

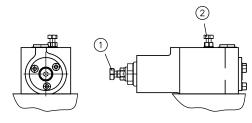

Обозначение **LSD**

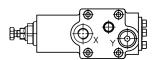
- 1 Регулятор производительности: регулирует постоянную разницу между давлением нагрузки и давлением насоса
- 2 Ограничитель давления: ограничивает давление насоса до максимального значения
- 3 Перепускная заслонка
- 4 Внешний предохранительный клапан (не входит в комплект поставки)


Характеристика LS, LSN, LSP

р_в – рабочее давление (бар); Q – производительность (%)

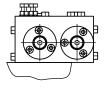
1 ок. 3 бар

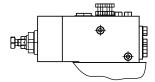

Характеристика LSD

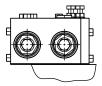

р_в – рабочее давление (бар); Q – производительность (%)

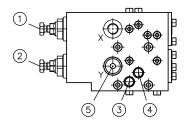
1 ок. 12 бар

Обозначение **LS**








- 1 Перепад давления Δp (давление режима ожидания)
- 2 Перепускная заслонка

Обозначение LSN, LSP

- 1 Перепад давления Δp (давление режима ожидания)
- 2 Максимальное давление рмакс (ограничитель давления)
- 3 Перепускная заслонка LS
- 4 Перепускная заслонка N
- 5 При обозначении LSN закрыто резьбовой пробкой

Регулировка давления

Регулировка давления	Диапазон давления (бар)	∆р (бар) / оборот	Заводская настройка давления (бар)
Максимальное давление $p_{\text{макс.}}$ (N250) ¹⁾	50 200	ок. 50	200
Максимальное давление $p_{\text{макс.}}$ (N400) ¹⁾	100 350	ок. 100	300
Перепад давления Δp (Р)		ок. 15	15
Перепад давления Δp (LS)		ок. 15	30

1) В зависимости от настройки давления устанавливается слабая (N250) или сильная (N400) пружина.

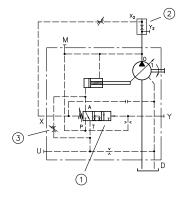
ОПАСНОСТЬ

Опасность получения травм при перегрузке компонентов из-за неправильных настроек давления! Незначительные травмы.

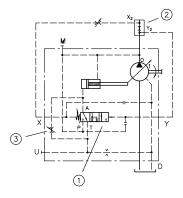
- Настройки и изменения давления необходимо выполнять только с одновременным контролем по манометру.
- Следует соблюдать максимальное давление насоса.

1 УКАЗАНИЕ

Перед настройкой ослабить контргайку, чтобы не повредить кольцевое уплотнение.



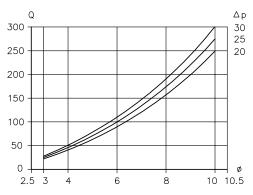
2.2.2 Регулятор Q, Qb


Регулятор Q(b) – это регулятор производительности, который генерирует постоянный, не зависящий от частоты вращения объемный расход. Он регулирует постоянный перепад давления посредством диафрагмы в порту Р. Перепад давления регулируется в диапазоне от 15 до (уточняется) бар, диафрагма доступна в разной градации (см. таблицу).

- **Q**. Стандартное исполнение
- **Qb**: исполнение с внешней обратной связью по давлению насоса для компенсации потери давления в линии Р. Для гидростатических применений с высокими требованиями к постоянству частоты вращения, например, в приводах генераторов.

Обозначение **Q**

Обозначение **Qb**



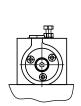
- 1 Регулятор производительности: регулирует постоянный перепад давления до диафрагмы и после нее
- 2 Диафрагма: выбор по таблице (не входит в комплект поставки)
- 3 Перепускная заслонка

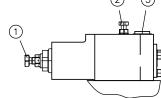
Диафрагма (мм)	Объемный расход при перепаде давления в 20 бар (л/мин)	Диафрагма (мм)	Объемный расход при перепаде давления в 20 бар (л/мин)
3	ок. 23	7	ок. 127
3,5	ок. 32	7,5	ок. 146
4	ок. 42	8	ок. 166
4,5	ок. 53	8,5	ок. 188
5	ок. 65	9	ок. 210
5,5	ок. 79	9,5	ок. 234
6	ок. 94	10	ок. 260
6,5	ок. 110		

Обозначение Q, Qb

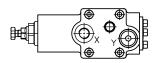
 \varnothing Диаметр диафрагмы (мм); Q – производительность (л/мин)

Определение объемного расхода


$$Q = 0, 55 \cdot d^2 \sqrt{\Delta p}$$


Q = объемный расход (л/мин)

d = диаметр диафрагмы (мм)


 $\Delta p = перепад давления (бар)$

Обозначение **Q, Qb**

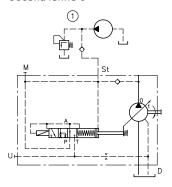
- Перепад давления ∆р (давление режима ожидания)
- 2 Перепускная заслонка
- 3 Порт Ү. При обозначении Q закрыто резьбовой пробкой. При обозначении Qb подключение сигнала давления перед диафрагмой.

Регулировка давления

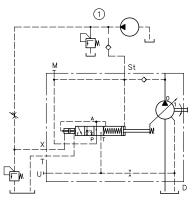
Регулировка давления	Диапазон давления (бар)	Д р (бар) / оборот	Заводская настройка давления (бар)
Перепад давления Δ р		ок. 15	15

УКАЗАНИЕ

Перед настройкой ослабить контргайку, чтобы не повредить кольцевое уплотнение.

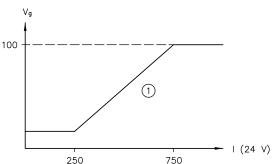

2.2.3 Регулятор V, VH

Регуляторы типа V и VH — это пропорциональные регуляторы производительности, которые генерируют переменный, зависящий от частоты вращения объемный расход. В зависимости от входного электрического или гидравлического сигнала они регулируют рабочий объем насоса. Полученный объемный расход рассчитывается из рабочего объема и частоты вращения.


Необходимое давление управления для регулировки угла поворота снимается изнутри. В случае использования в системах с отрытым центром при рабочем давлении < 25 бар необходимо дополнительно предусмотреть внешний вспомогательный насос или подпорный клапан, чтобы обеспечить надежное регулирование.

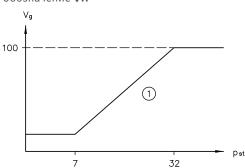
- V. Электрический регулятор производительности с возрастающей характеристикой
- **VH.** Гидравлический регулятор производительности с возрастающей характеристикой

Обозначение **V**



Обозначение VH

Внешний вспомогательный насос с предохранительным клапаном и обратным клапаном (не входит в комплект поставки)


Обозначение **V**

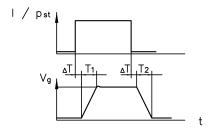
I – сила тока (мА); V_g – геометрический рабочий объем (%)

Гистерезис ок. 2 %

Обозначение VH

 p_{st} – давление управления (бар); V_g – геометрический рабочий объем (%)

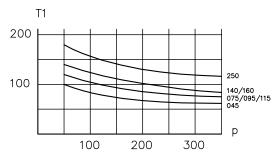
Гистерезис ок. 4 %


Q = 0 л/мин возможно за счет использования вспомогательного насоса.

При V_q = 0 смі/об требуется дополнительная промывка через порт отвода утечек масла, чтобы обеспечить достаточную смазку насоса.

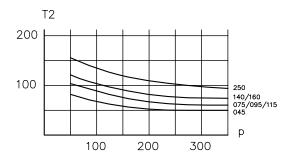
Рекомендуемый объемный расход: 2 л/мин (V30D-045/075), 3 л/мин (V30D-095/115), 4 л/мин (V30D-140/160) или 5 л/мин (V30D-250)

Время отклика

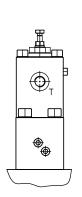


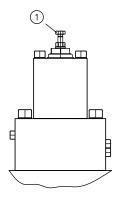
∆Т = время задержки

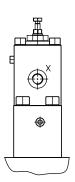
 T_1 = время регулирования вверх от 0 до макс.

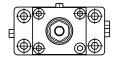

 T_2 = время регулирования вверх от макс. до 0

Время регулирования Т1 (мс)

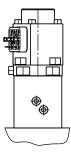

р – давление (бар); Т1 – время регулирования (мс)

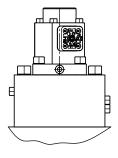

Время регулирования Т2(мс)

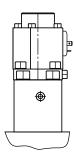


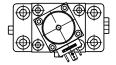

р – давление (бар); Т2 – время регулирования (мс)

Обозначение **VH**



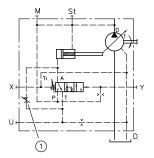



1 Ограничитель хода регулирующего клапана

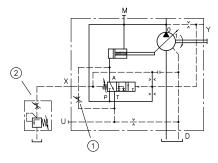


Обозначение **V**

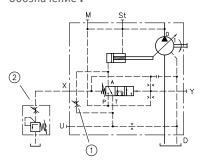
2.2.4 Регулятор N, P, Pb и PD5

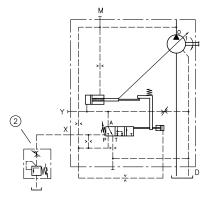

Регуляторы типа N, P, Pb и PD5 — это регуляторы давления. Как только давление насоса превышает установленное значение, они уменьшают угол поворота насоса и регулируют постоянный уровень давления.

В зависимости от типа регулятора настройка давления осуществляется либо регулируемым винтом непосредственно на регуляторе, либо внешним пилотным клапаном.

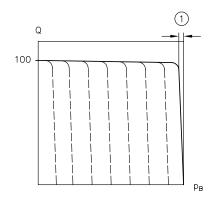

- N. Настройка давления осуществляется регулируемым винтом непосредственно на регуляторе.
- Р. Настройка давления осуществляется внешним пилотным клапаном, подключаемым к регулятору через присоединение линии управления
- **Pb**: Настройка давления осуществляется внешним пилотным клапаном, подключаемым к регулятору через присоединение линии управления. Давление в линии Р измеряется не в насосе.
 - Целесообразно использовать только в системах, подверженных сильной вибрации (например, в аккумулирующих установках).
- **PD5**: Параллельный регулятор давления. Регулятор PD5 используется, когда несколько насосов питают один потребитель. На всех насосах он регулирует одинаковый рабочий объем. Настройка давления осуществляется внешним пилотным клапаном, подключаемым к регуляторам через присоединения линии управления.

Регуляторы давления могут использоваться либо в системах постоянного давления, либо в качестве ограничителя давления с малыми потерями в комбинации с регулятором производительности (например, типа V или VH).

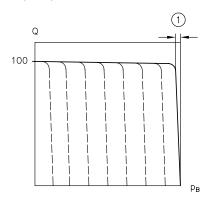

Обозначение N


Обозначение РЬ

Обозначение Р


Обозначение **PD5**

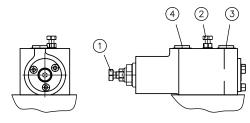
- 1 Перепускная заслонка
- 2 Внешний предохранительный клапан (не входит в комплект поставки)



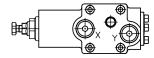
Характеристика N, P, Pb

 p_B — рабочее давление (бар); Q — производительность (%)

Характеристика **PD5**

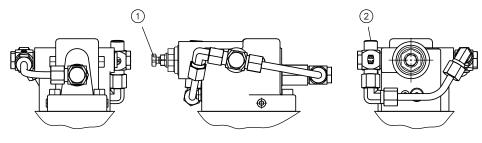


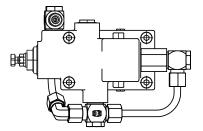
 p_B — рабочее давление (бар); Q — производительность (%)


1 ок. 12 бар

1 ок. 3 бар

Обозначение **N, P, Pb**





- 1 Настройка давления р
- 2 Перепускная заслонка
- 3 Порт Y: При обозначении N и P закрыто резьбовой пробкой
- 4 Порт X: При обозначении N закрыто резьбовой пробкой

Обозначение **PD5**

- Настройка давления р
- Порт Х

Регулировка давления

	Диапазон давления (бар)	Δр (бар)/оборот	Заводская настройка давления (бар)
N 250 ¹⁾	50-200	ок. 50	200
N 400 1)	100-350	ок. 100	300
P, Pb, PD5		ок. 15	15

1) В зависимости от настройки давления устанавливается слабая (N250) или сильная (N400) пружина.

№ ОПАСНОСТЬ

Опасность получения травм при перегрузке компонентов из-за неправильных настроек давления! Незначительные травмы.

- Настройки и изменения давления необходимо выполнять только с одновременным контролем по манометру.
- Следует соблюдать максимальное давление насоса.

1 УКАЗАНИЕ

Перед настройкой ослабить контргайку, чтобы не повредить кольцевое уплотнение.

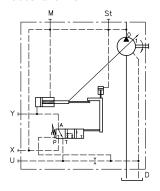
2.2.5 Регулятор L, Lf и Lf1

Регуляторы типа L, Lf и Lf1 – это регуляторы мощности. Как только продукт выходит за пределы установленного значения рабочего объема и давления, регулятор уменьшает угол поворота насоса, чтобы защитить приводной вал, а двигатель или редуктор – от перегрузки ($p_B \times V_g =$ постоянное).

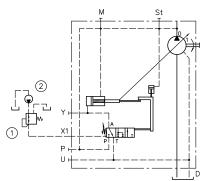
Настройка селективно осуществляется как ограничение крутящего момента (H-M) или ограничение мощности (KBT) на соответствующей частоте вращения (об/мин).

Приводной крутящий момент

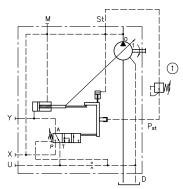
$$M = \frac{V_g \cdot \Delta p}{20 \cdot \pi \cdot \eta_{mh}} (Nm)$$


Приводная мощность

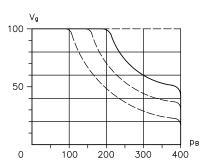
$$P = \frac{2\pi \cdot M \cdot n}{60000} = \frac{Q \cdot \Delta p}{600 \cdot \eta_t} (kW)$$


М	= крутящий момент (Н-м)
V_g	= геометрический рабочий объем (смі/об.)
Δр	= перепад давления
рв	= рабочее давление
Р	= мощность (кВт)
Q	= объемный расход (л/мин)
n	= частота вращения (об/мин)
ην	= объемный КПД
η_{mh}	= гидромеханический КПД
ητ	= общий КПД $\eta_T = \eta_v *_{\eta_w}$)

- L. Регулятор мощности с внешним регулируемым параметром
- Lf: Гидравлический регулятор мощности с возрастающей характеристикой
- Lf1: Гидравлический регулятор мощности с падающей характеристикой

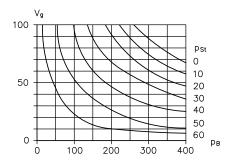

Обозначение **L**

Обозначение **Lf**


Обозначение **Lf1**

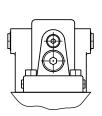
- 1 Внешний редукционный клапан (не входит в комплект поставки)
- 2 Внешний вспомогательный насос (не входит в комплект поставки)

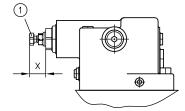
Обозначение L, Lf, Lf1

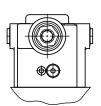

 p_B — давление (бар); V_g — геометрический рабочий объем (%)

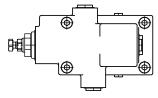
Минимальная регулируемая настройка номинального крутящего момента (действительно только для исполнений без дополнительных регуляторов!)

Обозначение	Н∙м	соответствует кВт/об/ мин
045	40	6/1500
075	70	11/1500
095/115	99	15/1500
140/160	146	22/1500
250	271	41/1500

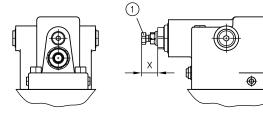

Характеристика **Lf1**

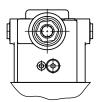

– грубые ориентировочные значения для дистанционной регулировки регулятора Lf1

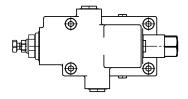



 p_B — рабочее давление (бар); V_g — геометрический рабочий объем (%), p_{St} — давление управления (бар)

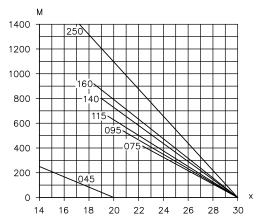
Обозначение **L**






1 Настройка крутящего момента

Обозначение **Lf, Lf1**



- 1 Перепад давления Δp (давление режима ожидания)
- 2 Порт p_{St}

Обозначение L, Lf, Lf1

Х – размер (мм); М – крутящий момент (Н м)

1 УКАЗАНИЕ

Перед настройкой ослабить контргайку, чтобы не повредить кольцевое уплотнение.

3

Характеристики

3.1 Общие данные

Наименование	Регулируемый аксиально-поршневой насос
Конструктивное исполнение	Аксиально-поршневой насос в конструкции с наклонным диском
Навесной монтаж	Монтажный фланец в соответствии с DIN ISO 3019-1 или DIN ISO 3019-2
Поверхность	Грунтованная
Крутящие моменты на входе/выходе	См. "Максимально допустимый крутящий момент на входе/выходе"
Монтажное положение	Любое (указания по монтажу см. <u>5 "Указания по монтажу, эксплуатации и техобслуживанию"</u>)
Направление вращения	Вправо, влево или в обе стороны
Порты	 Порт всасывания Порт нагнетания Порт отвода утечек масла Присоединительное отверстие для манометра
Рабочая среда	 Гидравлическое масло согласно DIN 51524 Часть 1–3; ISO VG 10–68 согласно DIN 51519 Диапазон вязкости от 10 до 1000 мм²/с оптимальная работа в диапазоне от 16 до 60 мм²/с Подходит для биоразлагаемых сред типа HEPG (полиалкиленгликоль) и HEES (синтетические эфиры) при рабочей температуре до прим. +70 °C.
Класс чистоты	ISO 4406 20/18/15
Температура	 Температура окружающей среды: от -40 до +60 °C (соблюдайте интервал вязкости) Температура масла: от - 25 до +80°C (соблюдайте интервал вязкости) Начальная температура: Допускается до -40 °C (соблюдайте начальную вязкость), если соблюдаются пределы применения, см. "Указания по эксплуатации" Биоразлагаемые рабочие жидкости: не выше +70 °C

Давление и производительность

Рабочее давление	См. Глава 2, "Поставляемые варианты исполнения, основные данные"
Рабочий объем	См. Глава 2, "Поставляемые варианты исполнения, основные данные"

Macca

Тип V30D	Без регулятора (кг)	С регулятором (кг)
045	40	46
075	60	66
095	70	76
115	70	76
140	85	91
160	85	91
250	130	136

Прочие характеристики

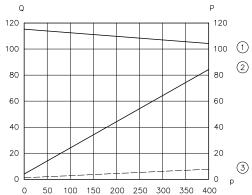
Наименование		Номинальный размер						
		045	075	095	115	140	160	250
Макс. угол регулировки		17°	17,5°	17°	20°	17,5°	20°	17,5°
Гребуемое абсолютное давление на впуске в открытом контуре	бар	0,8	0,85	0,85	0,85	0,85	0,85	0,85
Макс. допустимое давление в корпус е (статическое/динамическое)	бар	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Макс. допустимое давление на впуске	бар	25	25	25	25	25	25	25
Макс. частота вращения в режиме всасывания и макс. угол регулировки при абс. давлении 1 бар Давление на впуске	об/мин	2 600	2 400	2 200	2 000	2 200	1 900	1 800
Макс. частота вращения на нулевом ходу и абс. Давление на впуске	об/мин	3 600	3 200	2 900	2 800	2 600	2 500	2 000
Макс. частота вращения при непрерывной работе	об/мин	500	500	500	500	500	500	500
Гребуемый приводной момент при 100 бар	Н-м	77	128	164	197	240	275	430
Приводная мощность при 250 бар и 1450 об/мин	кВт	30	50	64	77	95	109	174
Инерционный момент	KΓ M ²	0,0056	0,0124	0,0216	0,0216	0,03	0,03	0,0825
Срок службы L₁о подшипников валов при 250 бар, 1450 об/мин и макс. угле регулировки	Ч	31 000	20 000	17 000	10 000	17 000	10 000	23 000
Уровень звукового давления при 250 бар, 1450 об/мин и макс. угле регулировки (измерен- ный в звукометрическом помещении согласно DIN ISO 4412-1, расстояние измерения 1 м)	дБ(А)	72	74	75	75	76	76	77

Максимально допустимые крутящие моменты на входе/выходе

Наименование		Номинальный раз	Номинальный размер					
		045	075	095/115	140/160	250		
Шлицевой вал D	Разгон / отбор мощности	550 Н м/275 Н м	910 Н м/455 Н м	1200 Н м/600 Н м	1700 Н м/850 Н м	3100 Н м/1550 Н м		
Призматическая шпонка К	Привод	280 Н м	460 Н м	650 Н м	850 Н м	1550 Н м		
Шлицевой вал S	Разгон / отбор мощности	500 Н м/272 Н м	500 Н м/445 Н м	1200 Н м/600 Н м	1200 Н м/850 Н м	1200 H m/1000 H m		

3.2 Характеристики

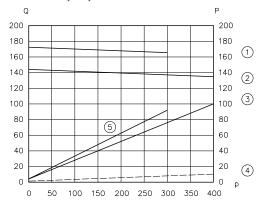
Производительность и мощность (основной насос)


На диаграммах показаны производительность и приводная мощность через давление (без регулятора) при 1450 об/мин.

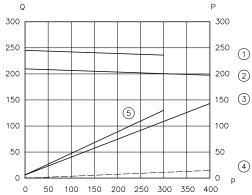
V30D-045 Q Ρ 80 80 70 70 (1) 60 60 50 50 (2) 40 40 30 30 20 20 10 10 (3) 0 0 200 250 300 350 400

р — давление (бар); Q — производительность (л/мин); Р — мощность (кВт)

- 1 Производительность/давление
- 2 Приводная мощность / давление (макс. угол регулировки)
- 3 Приводная мощность / давление (нулевой ход)


V30D-075

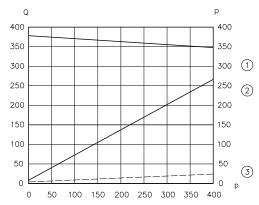
р – давление (бар); Q – производительность (л/мин); Р – мощность (кВт)


- 1 Производительность/давление
- 2 Приводная мощность / давление (макс. угол регулировки)
- 3 Приводная мощность / давление (нулевой ход)

V30D-095(115)

р – давление (бар); Q – производительность (л/мин); Р – мощность (кВт)

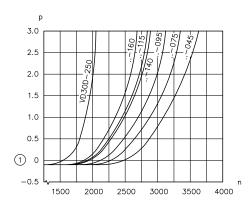
V30D-140(160)



р – давление (бар); Q – производительность (л/мин); Р – мощность (кВт)

- 1 Производительность / давление (V30D-115)
- 2 Производительность / давление (V30D-095)
- 3 Приводная мощность / давление (V30D-095, макс. угол регулировки)
- 4 Приводная мощность / давление (V30D-095/115, нулевой ход)
- 5 Приводная мощность / давление (V30D-115, макс. угол регулировки)
- 1 Производительность / давление (V30D-160)
- 2 Производительность / давление (V30D-140)
- 3 Приводная мощность / давление (V30D-140, макс. угол регулировки)
- 4 Приводная мощность / давление (V30D-140/160, нулевой ход)
- 5 Приводная мощность / давление (V30D-160, макс. угол регулировки)

V30D-250



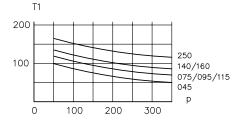
р – давление (бар); Q – производительность (л/мин); Р – мощность (кВт)

- 1 Производительность/давление
- 2 Приводная мощность / давление (макс. угол регулировки)
- 3 Приводная мощность / давление (нулевой ход)

Давление впуска и частота вращения самовсасывания

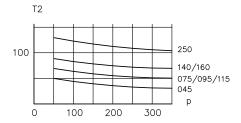
На диаграммах показано давление впуска / частота вращения при макс. угле регулировки и вязкости масла 75 мм2/с.

р – давление на впуске (бар), п – частота вращения (об/мин)

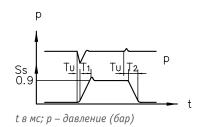

1 0 бар отн. = 1 бар абс.

Время регулирования

Время регулирования **Т1** (регулятор LSN)


На диаграмме показано время регулирования вверх в зависимости от давления для регулятора LSN, т. е. время, необходимое для того, чтобы насос отклонился и перешел с минимального рабочего объема на максимальный.

р – давление (бар); Т1 – время регулирования (мс)


Время регулирования **T2** (регулятор LSN)

На диаграмме показано время регулирования вверх в зависимости от давления для регулятора LSN, т. е. время, необходимое для того, чтобы насос вернулся в исходное положение и перешел с максимального рабочего объема на минимальный.

р – давление (бар); Т2 – время регулирования (мс)

Интервалы времени регулирования **Tu, T1** и **T2**

S_S	= ход исполнительного элемента, исполнительный элемент
Tu	= время задержки < 3 мс
T ₁	= время регулирования вверх
T ₂	= время регулирования вниз
р	= давление

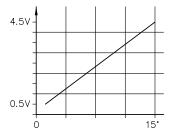
На линию LS приходится ок. 10 % объема линии Р

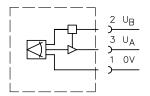
3.3 Электрические характеристики V30D

Обозначение регулятора V

Номинальное напряжение	12 В пост. тока	24 В пост. тока
Сопротивление R ₂₀	4,6 Ω	21,7 Ω
Холодный ток \mathbf{I}_{20}	2,6 A	1,2 A
Предельный ток \mathbf{I}_{G}	1,8 A	0,81 A
Предельная мощность Р ₆	21,5 Вт	21,5 Вт
Продолжительность включения	S1 (100 %)	S1 (100 %)
Частота осцилляции	от 50 до 150 Гц	от 50 до 150 Гц
Амплитуда осцилляции $A_D(\%) = \frac{I_{Spitze} - Spitze}{IG} \cdot 100$	$20 \% \le A_D \le 40 \%$	20 % ≤ A _D ≤ 40 %

Подключение к электропитанию


Обозначение **V**

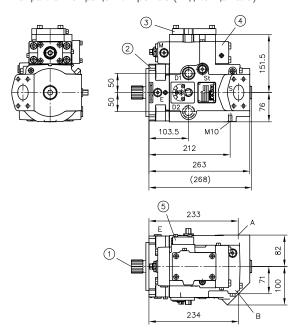


3.4 Датчик угла наклона

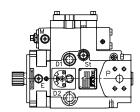
Датчик угла наклона

Рабочее напряжение	U _в 1030 В пост. тока
Выходной сигнал	U _A 0,54,5 B
Проверено для автомобилей	DIN 40839
Контрольный импульс	1, 2, 3 a/b
Электрическое подключение	Разъем 3-контактный AMP Superseal 1.5

4

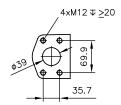

Размеры

Все размеры указаны в миллиметрах. Оставляем за собой право на внесение изменений.


4.1 Основной насос

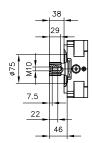
4.1.1 Тип V30D-045

Направление вращения правое (вид конца вала)

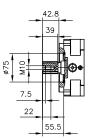

Направление вращения левое (вид конца вала)

- 1 Исполнение вала
- 2 Исполнение фланца
- 3 Perулятор L, Lf1, LSD, PD5
- 4 Регулятор V, VH
- 5 Perулятор N, P, Pb, LS, Q, Qb, LSN, LSP

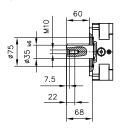
Порт всасывания


Порты D1, D2, E, M, St (DIN EN ISO 228-1)

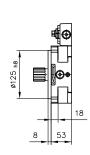
D1, D2	Порт отвода утечек масла G 1/2
Е	Порт выпуска воздуха и промывки G 1/4
М	Измерительный порт G 1/4
St	Порт линии управления G 1/4

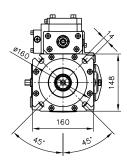


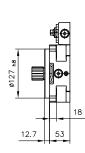
Типы исполнения вала

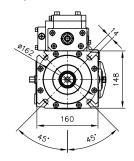

Зубчатый вал Обозначение **D** (W35x2x16x9g DIN 5480)

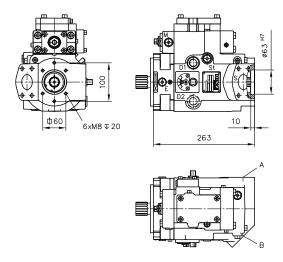
Зубчатый вал Обозначение **S** (SAE-C J744 14T 12/24 DP)

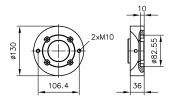



Вал со шпонкой Обозначение **К** (Ø35 - AS10x8x56 DIN 6885)

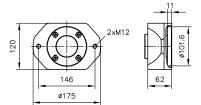

Типы исполнения фланца


Обозначение **G** (125 B4 HW DIN ISO 3019-2)

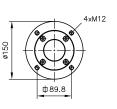

Обозначение **F** (SAE-C J7446 4 отв.) (127-4 DIN ISO 3019-1)

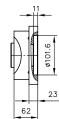


Тип исполнения корпуса -2 (с проходным валом)

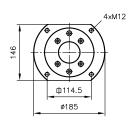


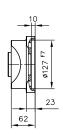
Исполнение фланца (с выходной стороны)


Обозначение **С411, С412, С413** (SAE-A 2 отв.)

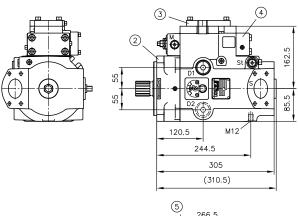


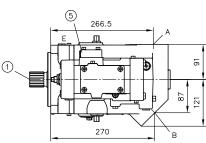
Обозначение **C414, C416** (SAE-B 2 отв.)



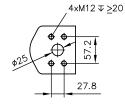

Обозначение **С415** (SAE-B 4 отв.)

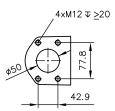
Обозначение **С418** (SAE-C 4 отв.)





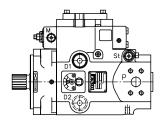
4.1.2 Тип V30D-075


Направление вращения правое (вид конца вала)



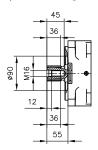
- 1 Исполнение вала
- 2 Исполнение фланца
- 3 Perулятор L, Lf1, LSD, PD5
- 4 Регулятор V, VH
- 5 Регулятор N, P, Pb, LS, Q, Qb, LSN, LSP

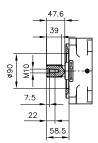
Порт нагнетания


Порт всасывания

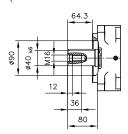
Порты D1, D2, E, M, St (DIN EN ISO 228-1)

D1, D2	Порт отвода утечек масла G 1/2
Е	Порт выпуска воздуха и промывки G 1/4
М	Измерительный порт G 1/4
St	Порт линии управления G 1/4

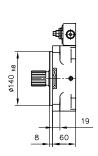

Направление вращения левое (вид конца вала)

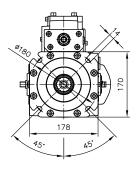


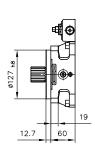
Типы исполнения вала

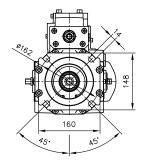

Зубчатый вал Обозначение **D** (W40x2x18x9g DIN 5480)

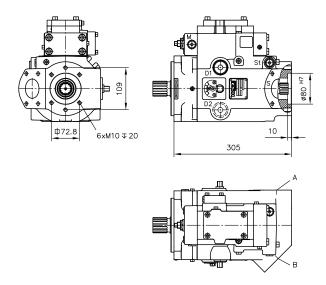
Зубчатый вал Обозначение **S** (SAE-C J744 14T 12/24 DP)

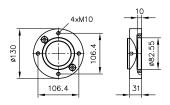



Вал со шпонкой Обозначение **К** (Ø40 - A12x8x70 DIN 6885)

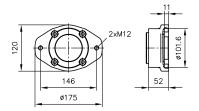

Типы исполнения фланца


Обозначение **G** (140 B4 HW DIN ISO 3019-2)

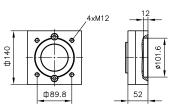

Обозначение **F** (SAE-C J7446 4 отв.) (152-4 DIN ISO 3019-1)

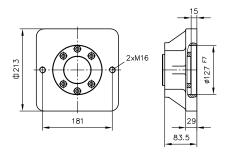


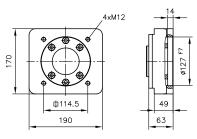
Тип исполнения корпуса 2 (радиальные порты, с проходным валом)



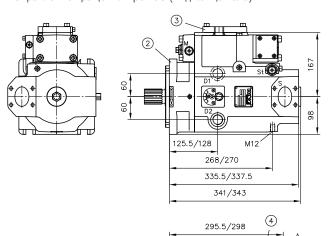
Исполнение фланца (с выходной стороны)

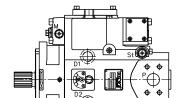

Обозначение **С421, С422, С423** (SAE-A 2 отв.)


Обозначение **C424, C426** (SAE-B 2 отв. и SAE-B 4 отв.)


Обозначение **С425** (SAE-B 4 отв.)

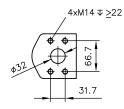
Обозначение **C427, C429** (SAE-C 4 отв. и SAE-C 2 отв.)


Обозначение **С428** (SAE-D 4 отв.)



4.1.3 Тип V30D-095/115

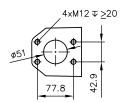
Направление вращения правое (вид конца вала)



Направление вращения левое (вид конца вала)

- 1 Исполнение вала
- 2 Исполнение фланца
- 3 Perулятор L, Lf1, LSD, PD5
- 4 Регулятор V, VH
- 5 Perулятор N, P, Pb, LS, Q, Qb, LSN, LSP

Порт нагнетания

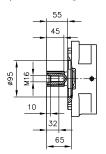

Порт всасывания

(5)

300/303

101

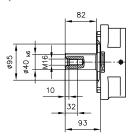
128/130


Порты D1, D2, E, M, St (DIN EN ISO 228-1)

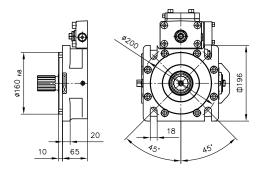
D1, D2	Порт отвода утечек масла G 3/4
Е	Порт выпуска воздуха и промывки G 1/4
М	Измерительный порт G 1/4
St	Порт линии управления G 1/4



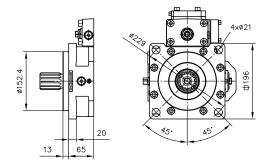
Типы исполнения вала


Зубчатый вал Обозначение **D** (W40x2x18x9g DIN 5480)

Зубчатый вал Обозначение **S** (SAE-D J744 13T 8/16 DP)

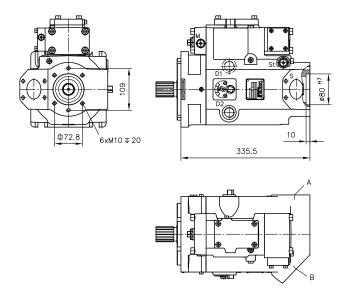


Вал со шпонкой Обозначение **К** (Ø40 - A12x8x80 DIN 6885)

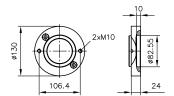


Типы исполнения фланца

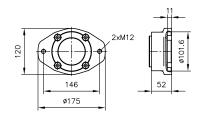
Обозначение **G** (160 B4 HW DIN ISO 3019-2)



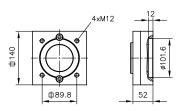
Обозначение **F** (SAE-D 4 отв. J 744) (152-4 DIN ISO 3019-1)

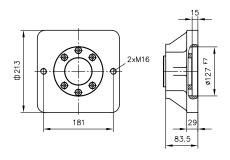


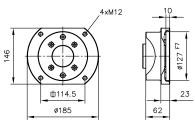
Тип исполнения корпуса 2 (радиальные порты, с проходным валом)

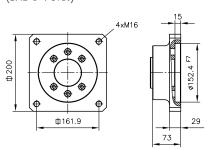


Исполнение фланца (с выходной стороны)

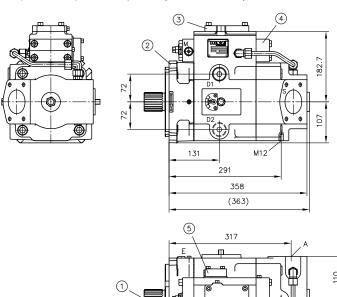

Обозначение **C431 (C441), C432 (C442), C433 (C443)** (SAE-A 2 отв.)

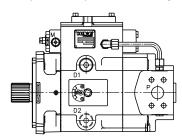

Обозначение **C434 (C444), C436 (C446)** (SAE-B 2 отв. и SAE-B 4 отв.)


Обозначение **C435 (C445)** (SAE-B 4 отв.)


Обозначение **C437 (C447), C439 (C449)** (SAE-C 4 отв. и SAE-C 2 отв.)

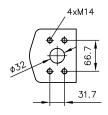
Обозначение **C438 (C448)** (SAE-D 4 отв.)


Обозначение **C440 (C450)** (SAE-D 4 отв.)

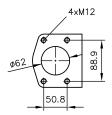


4.1.4 Тип V30D-140/160

Направление вращения правое (вид конца вала)



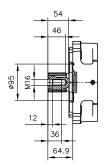
Направление вращения левое (вид конца вала)


- 1 Исполнение вала
- 2 Исполнение фланца
- 3 Perулятор L, Lf1, LSD, PD5
- 4 Регулятор V, VH
- 5 Perулятор N, P, Pb, LS, Q, Qb, LSN, LSP

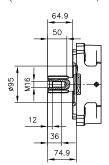
Порт нагнетания

Порт всасывания

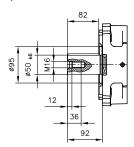
323


Порты D1, D2, E, M, St (DIN EN ISO 228-1)

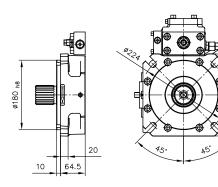
D1, D2	Порт отвода утечек масла G 3/4
Е	Порт выпуска воздуха и промывки G 1/4
М	Измерительный порт G 1/4
St	Порт линии управления G 1/4



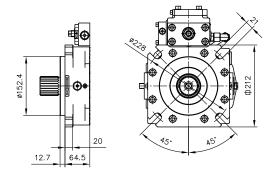
Типы исполнения вала


Зубчатый вал Обозначение **D** (W50x2x24x9g DIN 5480)

Зубчатый вал Обозначение **S** (SAE-D J 744 13T 8/16 DP)

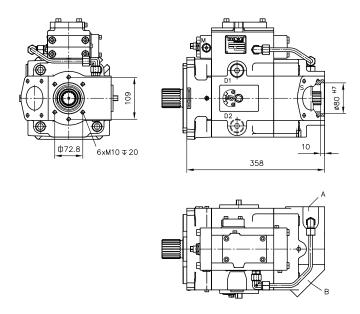


Вал со шпонкой Обозначение **К** (Ø50 - AS14x9x80 DIN 6885)

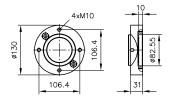


Типы исполнения фланца

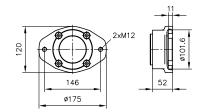
Обозначение **G** (180 B4 HW DIN ISO 3019-2)



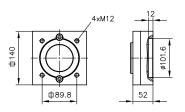
Обозначение **F** (SAE-D 4 отв. J 744) (152-4 DIN ISO 3019-1)

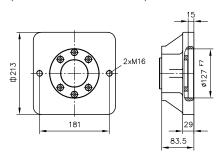


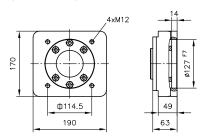
Тип исполнения корпуса 2 (радиальные порты, с проходным валом)

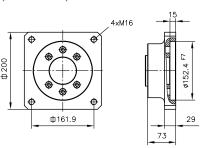


Исполнение фланца (с выходной стороны)

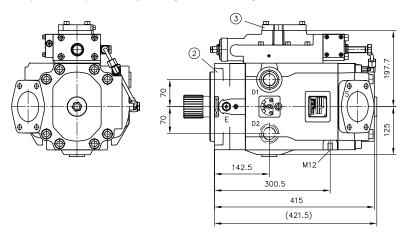

Обозначение **C451 (C461), C452 (C462), C453 (C463)** (SAE-A 2 отв.)

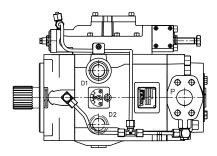

Обозначение **C454 (C464)**, **C456 (C466)** (SAE-B 2 отв. и SAE-B 4 отв.)

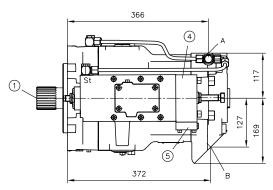

Обозначение **C455 (C465)** (SAE-B 4 отв.)


Обозначение **C457 (C467), C459 (C469)** (SAE-C 4 отв. и SAE-C 2 отв.)

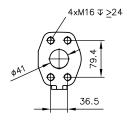
Обозначение **С458 (С468)** (SAE-D 4 отв.)

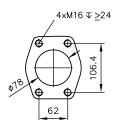

Обозначение **C460 (C470)** (SAE-D 4 отв.)




4.1.5 Тип V30D-250

Направление вращения правое (вид конца вала)

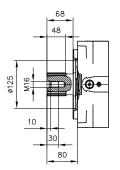

Направление вращения левое (вид конца вала)



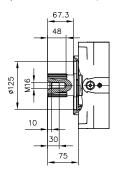
- 1 Исполнение вала
- 2 Исполнение фланца
- 3 Perулятор L, Lf1, LSD, PD5
- 4 Регулятор V, VH
- 5 Perулятор N, P, Pb, LS, Q, Qb, LSN, LSP

Порт нагнетания

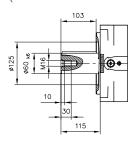
Порт всасывания


Порты D1, D2, E, St (DIN EN ISO 228-1)

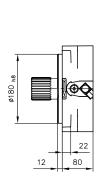
D1, D2	Порт отвода утечек масла М33х2
Е	Порт выпуска воздуха и промывки G 1/4
St	Порт линии управления, трубный монтаж \varnothing 8

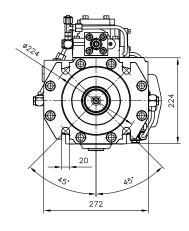


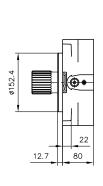
Типы исполнения вала

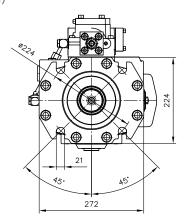

Зубчатый вал Обозначение **D** (W60x2x28x9g DIN 5480)

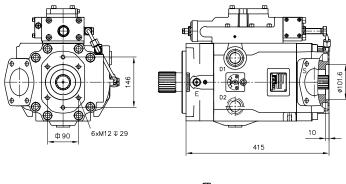
Зубчатый вал Обозначение **S** (SAE-D J 744 13T 8/16 DP)

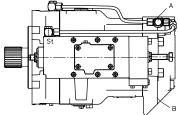


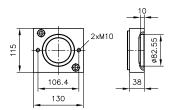

Вал со шпонкой Обозначение **К** (Ø60 - AS18x11x100 DIN 6885)

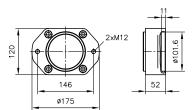

Типы исполнения фланца


Обозначение **G** (160 B4 HW DIN ISO 3019-2)

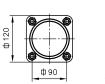

Обозначение **F** (SAE-D 4 отв. J 744) (152-4 DIN ISO 3019-1)



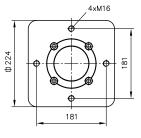

Тип исполнения корпуса 2 (радиальные порты, с проходным валом)

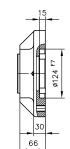


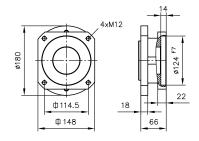
Исполнение фланца (с выходной стороны)


Обозначение **С471, С472, С473** (SAE-A 2 отв.)

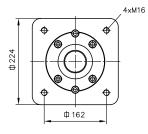
Обозначение **C474, C476** (SAE-B 2 отв. и SAE-B 4 отв.)

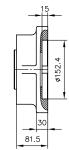



Обозначение **С475** (SAE-B 4 отв.)



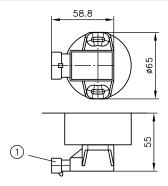
Обозначение **C477, C479** (SAE-C 4 отв. и SAE-C 2 отв.)





Обозначение **С478** (SAE-D 4 отв.)

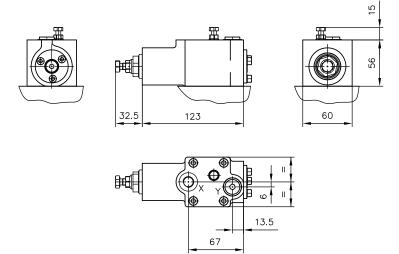
Обозначение **С480** (SAE-D 4 отв.)



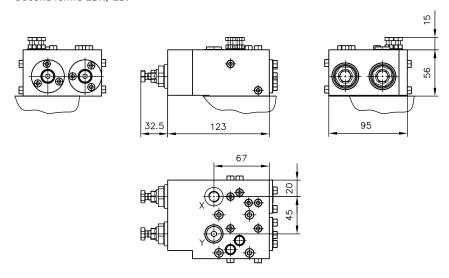
4.2 Индикатор угла наклона

Индикатор угла наклона пластины

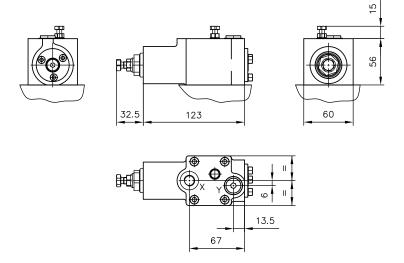
Датчик угла наклона



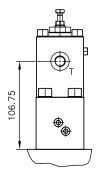
1 3-PIN AMP Superseal

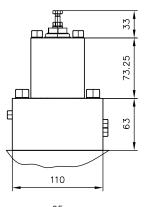


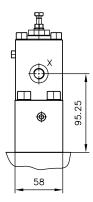
4.3 Регулятор

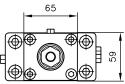

Обозначение **LS**

Обозначение LSN, LSP

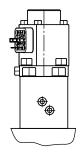


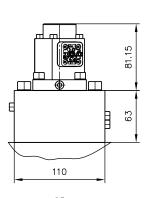

Обозначение **Q, Qb**

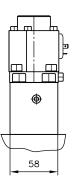


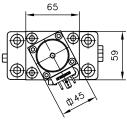


Обозначение **VH**

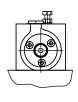


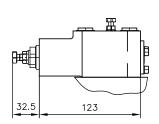


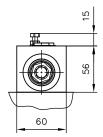


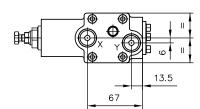


Обозначение **V**

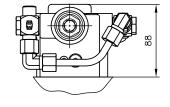


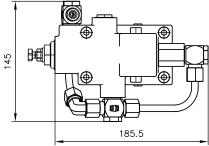


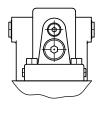


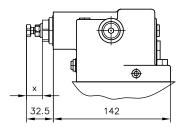


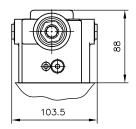
Обозначение N, P, Pb

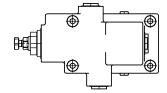




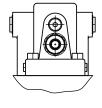

Обозначение **PD5**

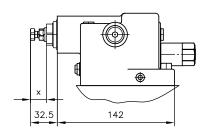


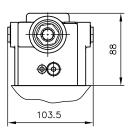


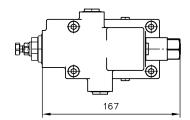


Обозначение **L**









Обозначение **Lf1**

Указания по монтажу, эксплуатации и техобслуживанию

5.1 Использование по назначению

Данное изделие предназначен исключительно для гидравлических систем (гидравлическая техника).

Пользователь должен соблюдать указания по технике безопасности и предупреждения, содержащиеся в этой документации.

Обязательные условия для безупречной и безопасной работы изделия:

- Соблюдайте все указания, содержащиеся в этой документации. Это относится, прежде всего, ко всем указаниям по безопасности и предупреждениям.
- Монтаж и ввод изделия в эксплуатацию должен выполнять только квалифицированный персонал.
- Изделие должно эксплуатироваться только в пределах указанных технических параметров. Технические параметры подробно представлены в этой документации.
- Кроме того, всегда соблюдайте указания руководства по эксплуатации компонентов, узлов и конкретной комплектной установки.

Если дальнейшая безопасная эксплуатация изделия невозможна:

- 1. Выведите изделие из эксплуатации и промаркируйте соответствующим образом.
- В этом случае дальнейшие использование и эксплуатация изделия запрещены.

5.2 Указания по монтажу

Встройка изделия в комплектную установку должна выполняться только с использованием стандартных и совместимых соединительных элементов (резьбовых соединений, рукавов, труб, креплений и т. п.).

Перед демонтажем изделие (в особенности агрегаты с гидроаккумуляторами) следует вывести из эксплуатации в соответствии с правилами.

ПРЕДУПРЕЖДЕНИЕ

Внезапные движения гидравлических приводов при неправильном демонтаже.

Тяжелые травмы или смертельный исход.

- Сбросьте давление в гидравлической системе.
- Выполните работы по подготовке к техническому обслуживанию.

5.2.1 Общие сведения

Регулируемый аксиально-поршневой насос V30D предназначен для эксплуатации в открытом контуре. Его можно монтировать при помощи монтажного фланца в соответствии с DIN ISO 3019-1 или DIN ISO 3019-2.

При установке следует соблюдать следующие пункты:

Монтаж и демонтаж насоса должен выполняться только обученным персоналом. Нужно всегда следить за абсолютной чистотой, чтобы загрязнения не оказали негативного воздействия на работу насоса.

- Перед эксплуатацией необходимо удалить все пластмассовые заглушки.
- Следует избегать установки над баком (см. раздел «Монтажные положения» в <u>Глава 5.2.3, "Монтажные положения"</u>).
- Необходимо соблюдать ориентировочные значения электрических характеристик.
- Перед первой эксплуатацией необходимо заполнить насос рабочей жидкостью и выпустить из него воздух. Невозможно автоматически заполнить насос через линию всасывания, открыв порты для утечки масла.
- Ни в коем случае нельзя допускать, чтобы насос работал с холостым ходом.
- Необходимо всегда изначально снабжать насос рабочей жидкостью. Даже кратковременная работа с недостаточным количеством рабочей жидкости может повредить насос. После ввода насоса в эксплуатацию такие повреждения не всегда сразу заметны.
- Возвращаемая в бак рабочая жидкость не должна сразу повторно всасываться (установить переборки!).
- Перед первой эксплуатацией после запуска следует дать насосу поработать ок. 10 мин. при макс. 50 бар.
- Насос с полным диапазоном давления следует использовать только после тщательного удаления из него воздуха и промывки.
- Следует всегда удерживать температуру в заданном диапазоне с самого начала (см. Глава 3, "Характеристики"). Запрещается превышать максимальную температуру.
- Необходимо всегда соблюдать класс чистоты рабочей жидкости. Дополнительно следует фильтровать рабочую жидкость соответствующим образом (см. Глава 3, "Характеристики").
- Прежде чем самостоятельно устанавливать фильтры на линии всасывания, необходимо обязательно получить предварительное разрешение от HAWE Hydraulik на их использование.
- На напорной линии следует обязательно установить системный предохранительный клапан, чтобы не превышалось максимальное системное давление.

5.2.2 Порты

Внутренний диаметр соединительных трубопроводов зависит от текущих условий эксплуатации, вязкости рабочей жидкости, пусковой и рабочей температуры, а также от частоты вращения насоса. Мы всегда рекомендуем использовать шлангопроводы по причине их улучшенных характеристик демпфирования.

Порт для выпуска воздуха и промывки

Насосы V30D оснащены двумя портами выпуска воздуха и промывки G 1/4 дюйма. При вертикальном монтаже они предназначены для выпуска воздуха и промывки переднего подшипника вала.

Порт нагнетания

В качестве порта нагнетания служат порты по SAE, см. <u>Глава 4, "Размеры"</u>. Отступая от требований стандарта, используется метрическая крепежная резьба.

Необходимо соблюдать моменты затяжки, указанные производителем арматуры.

Порт всасывания

В качестве порта всасывания на насосе служат порты по SAE, см. <u>Глава 4, "Размеры"</u>. Отступая от требований стандарта, используется метрическая крепежная резьба.

Необходимо обеспечить по возможности восходящую прокладку линии всасывания к баку. Это позволит отводить возможные воздушные включения. Соблюдайте указания в разделе «Монтажные положения» <u>Глава 5.2.3, "Монтажные положения"</u>. Абсолютное давление всасывания не должно превышать 0,85 бар. Как правило, стационарному трубопроводу следует предпочесть шлангопровод.

Порт отвода утечек масла

Насосы V30D оснащены 2 портами отвода утечек масла: G 1/2, G 3/4 дюйма или M33.

Внутренний диаметр линии отвода утечек масла не должен быть меньше 16 мм. Решающее значение для определения поперечного сечения имеет макс. допустимое давление в корпусе.

Линию отвода утечек масла необходимо подключить к системе таким образом, чтобы обязательно избежать прямого соединения с линией всасывания насоса.

Возможно одновременное использование всех портов отвода утечек масла.

Не требуется отдельная линия отвода утечек масла, ведущая от регулятора к баку. Необходимо соблюдать данные, указанные в <u>Глава 5.2.3,</u> <u>"Монтажные положения"</u>.

Верхний порт отвода утечек масла можно использовать для заполнения корпуса.

Порт LS в варианте LS, LSN, LSP, Q и Qb

Линия LS присоединена к регулятору посредством резьбового соединения G 1/4.

Внутренний диаметр линии зависит от монтажного положения насоса, она должна иметь 10 % от пропускной способности напорной линии. Как правило, шланговое соединение следует предпочесть трубному соединению.

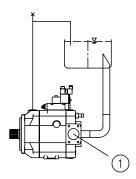
■ В нейтральном положении пропорционального золотникового распределителя обязательно требуется полная разгрузка линии LS.

Для эксплуатации с НFC (доля воды 35—50%) действуют следующие ограничения:

- бак расположен над насосом
- температура не превышает 50°C
- скорость жидкости в линии всасывания меньше 1 м/с
- макс. давление насоса 200 бар
- оба подшипника вала насоса омываются по отдельной линии подачи холодного масла, на каждый подшипник по 2 л/мин (V30D-045/075), 3 л/мин (V30D-095/115), 4 л/мин (V30D-140/160) и 5 л/мин (V30D-250)

Для эксплуатации с жидкостями с долей воды ≤ 20% действуют следующие ограничения:

- бак расположен над насосом
- температура бака не превышает 70°C
- скорость жидкости в линии всасывания меньше 1 м/с
- макс. давление насоса 300 бар
- возможно без промывки подшипников


5.2.3 Монтажные положения

Регулируемый аксиально-поршневой насос V30D можно установить в любом монтажном положении.

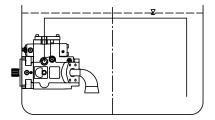
Для тандемных насосов или нескольких гидравлических насосов, установленных друг за другом, требуется опора (см. <u>Глава 5.2.1, "Общие сведения"</u>). Соблюдайте следующие пункты:

Вертикальный монтаж: (насос ниже мин. уровня заполнения)

👄 При горизонтальной установке необходимо использовать самый верхний порт отвода утечек масла.

Вертикальный монтаж: (насос ниже мин. уровня заполнения)

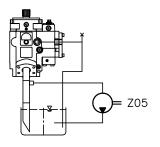
- ⇒ Необходимо установить насос таким образом, чтобы соединительный фланец насоса был направлен вверх.
- ⇒ При вертикальном монтаже необходимо использовать самый верхний порт отвода утечек масла.
- \Rightarrow Дополнительно следует подключить порт для выпуска воздуха G 1/8 дюйма на насосном фланце (см. <u>Глава 4, "Размеры"</u>).
- ⇒ Необходимо обеспечить постоянный выпуск воздуха из данной линии посредством принятия соответствующих мер (прокладка линии / выпуск воздуха).

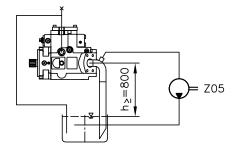

Для монтажа с насосным фланцем, направленным вниз, обратитесь в компанию HAWE Hydraulik.

5.2.4 Установка в бак

Установка в бак (насос ниже мин. уровня заполнения)

Возможна эксплуатация насоса со всасывающим патрубком и без него. Рекомендуется использовать короткий всасывающий патрубок (см. D 7960 N, 6.1.1 Всасывающие патрубоки).




Дополнительные указания при установке выше уровня заполнения

При монтаже насоса выше уровня заполнения требуются специальные меры. Насос не должен опорожняться через линии нагнетания, всасывания, утечек масла, удаления воздуха и управления. В особенности это относится к длительным интервалам простоя.

- Линию отвода утечек масла следует установить в баке таким образом, чтобы она была ниже уровня масла.
- Необходимо предусмотреть отвод воздуха из соединительных линий через отдельные воздушные отверстия.
- Очередность выпуска воздуха определяется монтажными условиями.
- При необходимости для удаления воздуха из линии всасывания следует предусмотреть шестеренный насос.

Для получения специальной консультации по расчету аксиально-поршневых насосов воспользуйтесь контактной формой: Контрольный лист для расчета регулируемого аксиально-поршневого насоса: Контрольный лист В 7960.

Более подробные сведения о монтаже, эксплуатации и техническом обслуживании содержатся в руководствах по монтажу: <u>В 7960</u>, <u>В 5488</u>.

5.3 Указания по эксплуатации

Ограничения работы во время фаз пуска в холодном состоянии и прогрева

Фаза	Температура	Вязкость (ммІ/с)
Фаза пуска в холодном состоянии	-2540 °C	< 1000
Фаза прогрева	-25 +80 °C	500- 1000
Нормальный режим	-25 +80 °C	10- 500

П УКАЗАНИЕ

Оптимальный диапазон: 16-60 ммІ/с

Фаза пуска в холодном состоянии:

- $p_B = 20 30 \text{ fap}$
- п ≤ 1000 об/мин

Фаза прогрева:

- $p_B = 20 200 \text{ fap}$
- п ≤ 1500 об/мин

Нормальный режим:

Дополнительных ограничений нет. Условия эксплуатации согласно главе 3 «Характеристики».

Соблюдайте настройку конфигурации изделия, а также давления и объемного расхода!

Обязательно соблюдайте содержащиеся в этой документации указания и технические параметры. Кроме того, следуйте указаниям, содержащимся в общем руководстве по эксплуатации установки.

1 УКАЗАНИЕ

- Перед использованием внимательно прочтите документацию.
- Документация должна быть постоянно доступна для операторов и персонала, ответственного за техническое обслуживание.
- Документация должна всегда соответствовать новейшей версии и включать все дополнения и изменения.

▲ ОПАСНОСТЬ

Опасность получения травм при перегрузке компонентов из-за неправильных настроек давления! Незначительные травмы.

- Настройки и изменения давления необходимо выполнять только с одновременным контролем по манометру.
- Следует соблюдать максимальное давление насоса.

Чистота и фильтрация рабочей жидкости

Микрозагрязнения могут существенно нарушить работу гидравлических компонентов. Загрязнения могут привести к необратимым повреждениям.

Возможные микрозагрязнения:

- металлическая стружка;
- частицы резины от шлангов и уплотнений;
- грязь во время монтажа и технического обслуживания;
- продукты механического износа;
- химическое старение рабочей жидкости.

УКАЗАНИЕ

Свежая рабочая жидкость из бака не обязательно соответствует необходимым требованиям к чистоте. При заполнении рабочую жидкость необходимо фильтровать.

Для обеспечения бесперебойной работы соблюдайте класс чистоты рабочей жидкости. (См. также класс чистоты в Γ лава 3, "Характеристики")

Применимый документ: <u>D 5488/1</u> рекомендации по выбору масла

6

Прочая информация

6.1 Указания по проектированию

Определение номинальных размеров

Производительность	$Q = \frac{V_g \cdot n \cdot \eta_V}{1000} (I/MuH)$	Q	= объемный расход (л/мин)
	1000 (77 WWH)	М	= крутящий момент (Н-м)
Приводной крутящий момент	$M = \frac{V_g \cdot \Delta p}{20 \cdot \pi \cdot \eta_{mh}} (Nm)$	Р	= мощность (кВт)
		V _g	= геом. объемная подача (см³/об)
Приводная мощность	$P = \frac{2\pi \cdot M \cdot n}{60000} = \frac{Q \cdot \Delta p}{600 \cdot \eta_t} (\kappa W)$	Δр	= перепад давления
		n	= частота вращения (об/мин)
		η_{V}	= объемный КПД
		η_{mh}	= гидромеханический КПД
		$\eta_{\rm t}$	= общий КПД $(\eta_t = \eta_V \cdot \eta_{mh})$

Дополнительная информация

Дополнительные исполнения

- Общее руководство по эксплуатации для проведения монтажа, ввода в эксплуатацию и техобслуживания масляно-гидравлических компонентов и установок: В 5488
- Регулируемый аксиально-поршневой насос, тип V30E: D 7960 E
- Регулируемый аксиально-поршневой насос, тип V60N: D 7960 N
- Нерегулируемый аксиально-поршневой насос (тип K60N): D 7960 K
- Нерегулируемый аксиально-поршневой насос, тип К61N: D 7961 К
- Аксиально-поршневой двигатель (тип M60N): D 7960 M
- Пропорциональные золотниковые распределители (тип PSL и PSV, размер 2): D 7700-2
- Пропорциональные золотниковые распределители (тип PSL, PSM и PSV, размер 3): D 7700-3
- Пропорциональные золотниковые распределители (тип PSL, PSM и PSV, размер 5): D 7700-5
- Пропорциональный золотниковый распределитель, тип PSLF, PSVF и SLF, размер объекта 3: D 7700-3F
- Пропорциональный золотниковый распределитель, тип PSLF, PSVF и SLF, размер объекта 5: D 7700-5F
- Пропорциональные золотниковые распределители (типы PSLF, PSLV и SLF, размер 7): D 7700-7F
- Клапан удержания нагрузки, тип LHT: D 7918
- Клапан удержания нагрузки, тип LHDV: D 7770
- Пропорциональный усилитель, тип EV1M3: D 7831/2
- Пропорциональный усилитель, тип EV1D: D 7831 D